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Abstract

The benefits of item response theory will only accrue to a testing program to the

extent that model assumptions are met. Obtaining accurate item parameter estimates is a

critical first step. However the sample sizes required for stable parameter estimation are

often difficult to obtain in practice, particularly for the more complex models. One

approach is to use modified item response models, which may be constructed so

additional parameters (e.g. more than one) are included in the model, while limiting

estimation. This study investigated several modified IRT models across differing sample

sizes and test length, in terms of their relative efficiency, accuracy and precision.
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Comparison of Alternative Models for
Item Parameter Estimation with Small Samples

The benefits of item response theory (IRT) for testing have been discussed

theoretically for a number of years (Hambleton & Swaminathan, 1985; Lord, 1980). The

benefits to testing programs include applications for test development, equating, and

computer adaptive testing. The most popular models practice are the unidimensional

1-parameter, 2-parameter, and 3-parameter logistic models (or, 1 -PL, 2-PL, and 3-PL

respectively). The formulas for these models are defined as

1-PL:

2-PL:

3-PL:

P(8)

P(e ) 1+ e-a(e-b)
1

1 c
P(E) )= C± 1+ e-a(0-b)

The number of item parameters which must be estimated in these models

determine the examinee sample sizes required for calibrating the data. Although the

recommendations for minimal sample size vary somewhat, typical guidelines are: 1000

examinees for the three parametei model, 500 for the two parameter (Hulin, Lissak, &

Drasgow, 1982) and 200 for the one parameter model (Wright & Stone, 1979). The

advantages of IRT methods will only accrue to the extent that the assumptions of the

model used are met and model-data fit is found. Among other possible problems, tests

which are constructed based upon imprecise item parameters may result in an

overestimate of the test information and in ability estimates which are less accurate than

they appear to be (Hambleton & Jones, 1994). One source of poor parameter estimates is
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the use of an inadequate sample size for calibration, which can result in excessively large

standard errors of the item parameter estimates (Hambleton & Jones, 1994; de Jong &

Stoyanova, 1994).

Many testing programs have an interest in IRT methods for test development, item

analysis, and adaptive testing. However, the sample sizes required for stable parameter

estimation are often difficult to obtain in practice, particularly for the more complex

models. The large sample sizes may be difficult to obtain if testing programs have small

numbers of examinees per administration, sub-group analyses draw from small numbers

of examinees, multiple sub-content areas are assessed separately, and/or test forms are

replaced frequently.

Sample size constraints might lead testing practitioners to select the model with

the least stringent requirement (e.g., one parameter). In practice, however, many testing

programs consist of sets of multiple choice items which vary in discrimination and allow

for guessing. This would suggest that a more general model, such as the three parameter

model, might provide the best fit to typical data and that use of a more limited model

would lead instead to model misspecification errors (Divgi, 1986).

Spray, Kalohn, Schulz, and Fleer (1995) conducted a simulation to investigate the

effect on adaptive classification testing when the true model was the 3-PL model, but the

items were calibrated according to the 1-PL model. These researchers found use of the

1-PL model under studied conditions to result in unacceptable rates of both false positive

and false negative decisions (i.e., examinees classified as either passing and failing, who

would have been classified otherwise according to the true 3-PL model). Yen (1981) has

also pointed out problems which may arise when a 1-parameter or 2-parameter model is

used inappropriately, or when truth is best modeled by a 3-parameter model. These

problems include the potential for sample dependency of some item parameters,

inaccurate model predictions, and attentuated correlations between actual and estimated

trait values.
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Modified Models

Given limitations on available examinee sample sizes, a practical concern is to

obtain the most accurate item parameter estimates possible. A promising avenue of

research concerns modified item response models (Barnes & Wise, 1991; Harwell &

Janosky, 1991; Sireci, 1992; and Stone & Lane, 1991). Modifications to models may be

constructed so that additional parameters are included in the model, while estimation is

limited by fixing that parameter value. Other modifications may be designed such that

parameter estimation is limited by allowing parameters only a limited range within which

they may vary.

Sireci (1992) investigated modifications to 1-PL and 2-PL models on multiple

small sample datasets, obtained over several test administrations. Part of this study was

an investigation of a modified model which included a fixed c parameter. One analysis

considered restricted conditions, in which item parameters were constrained to be equal

across the multiple samples of examinees. Another analysis addressed the use of mixed

models (e.g., more than one IRT model for a specific analysis). Modified IRT models

were also used by Stone and Lane (1991). In this study, an unconstrained 2-parameter

IRT model was compared to a model in which item parameters were constrained to be

equal across pretest-posttest administrations. This modification enabled an investigation

into the stability of the item parameter estimates over time. Additional alternative IRT

models have also been utilized in the context of differential item functioning (DIF)

analysis (Thissen, Steinberg, & Wainer, 1993).

While some of the studies of modified item response models have been conducted

on real data (Sireci, 1992; Stone & Lane, 1991), others have been simulations (Barnes &

Wise, 1991; Harwell & Janosky, 1991; Patsula & Pashley, 1996). Simulation studies

have the advantage of utilizing true parameter values, which are never known in practice.

For example, Barnes and Wise (1991) conducted a simulation in which the item

parameter estimates obtained under small sample conditions for typical 1-parameterand

3-parameter models were compared to two modified models. The modifications in this

study involved the inclusion of a fixed, non-zero c parameter. These fixed c parameter

models were based on the number of response options in the multiple choice items, A.
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One modification fixed c at 1/A, and a second modification fixed c at 1/A - .05. Because

the value of the c parameter was fixed, the sample size requirements for a standard one

parameter model remained appropriate under the modifications. The results indicated

that the modified models outperformed the more traditional 1-parameter and 3-parameter

models.

Harwell and Janosky (1991) also investigated item parameter estimation with

small samples. This simulation study examined several 2-parameter models in which

estimation of the a parameter was affected by imposing different variances on the prior

distribution of the a's. Under the conditions in this study, item parameter estimates for

small samples were recovered more accurately when a more informative prior variance

was used.

An alternative approach investigated by Patsula and Pashley (1996) used

polynomial logistic regression to model ICCs in pretest items (i.e., when ability estimates

can be reliably computed based on operational items). This procedure included a mixed

model component in that it provided a means of identifying subsets of items which could

be adequately modeled with fewer parameters (i.e., 2-PL or 1-PL). Where a reduced

number of parameters needs to be estimated, presumably more stable results can be

obtained under smaller sample conditions.

These results suggest that modifications to popular IRT models are worthy of

further investigation, and that appropriate modifications may provide more stable

estimation of parameters with fewer examinees than unmodified models. This study was

intended to build upon the previous research into modified item response models, under

moderate and small sample size conditions. Additionally, this study included a greater

number of replications than are often found in parameter estimation studies, providing for

a more stable analysis of results (Robey & Barcikowski, 1992; Stone, 1992).

Purpose

Obtaining accurate parameter estimation is a critical concern, since all of the

applications of IRT are based on these parameters. However practical testing applications

frequently include elements which might best be modeled by more complex models (e.g.,
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the 3-parameter model) while having only small samples of examinees to draw upon for

calibration data. Determining a means for parameter estimation under these conditions is

thus an important area of research.

This study investigated the relative small sample efficiency of several

modifications to existing IRT models. The purpose of this study was, in part, to find a

lower limit in terms of sample size needed to adequately recover item parameters. More

generally, the purpose was to investigate the sample size at which sampling error causes

more problems than model misspecification (and vice versa).

Methods

This study used simulated data, based on item parameters generated from data

from a previous administration of the 40-item ACT Assessment Mathematics test. The

3-PL model was used to obtain empirical item parameters using the archival item

responses from 2000 examinees. These empirical item parameters were then used to

generate simulated data. This set of item parameters has been used previously (Parshall

& Miller, 1995; Spray, 1989), and is intended to provide results more generalizable to

practice than simulated data are often able to do.

Examinees' (simulees') true thetas were generated from a normal ability

distribution (i.e., N(0,1)). These ability and item parameters were regarded as true

parameters for purposes of the study. Item response vectors were then generated by

determining the probability of a correct response for a given theta parameter, and then

comparing that probability to a random number sampled from a uniform (0,1)

distribution. If the random number was less than or equal to the probability of a correct

response, then the response was scored as correct.

Item parameter estimates were obtained through the calibration program BILOG

(Mislevy & Bock, 1990). Models under investigation included the typical 1-parameter, 2-

parameter, and 3-parameter models as benchmarks. The additional, modified models

consisted of a 2-parameter model with a restricted a (i.e., a strong prior distribution was

imposed), a 3-parameter model with a restricted a parameter, and a 3-parameter model

7
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with both a restricted a parameter and a common c parameter. This yielded a total of six

models, three of which were unrestricted, and three of which were restricted.

The benchmark 1-PL model constrained all a parameters to be equal; both the 1-

PL and the 2-PL models set the c parameters to zero (i.e., did not estimate c parameters).

The benchmark 2-PL and 3-PL models used BILOG's default prior distribution for a

parameters, which is .52 in the lognormal metric (or, ga=1.13 and 6a =.36 in the a metric).

This default prior is typically imposed to avoid the extreme values sometimes estimated

for a parameters (i.e., to prevent Heywood cases). For the benchmark 3-PL model, the

default beta prior was also used for estimation of the c parameter. All three modified

models imposed more informative priors on the a parameters. These modified 2-PL and

3-PL models included a prior of .252 in the lognormal metric (or, ga=1.03 and a a=.07 in

the a metric). One modified 3-PL model also constrained the c parameters to be equal

(but free to be non-zero). These modified models are noted as 2-PLa, 3-PLa, and 3-PLac.

Each of these models was investigated with sample sizes of 1000, 500, 250, and

100. The largest sample size here is typically considered adequate for the 3-parameter

model, while the smallest sample size might prove challenging for even the 1-parameter

model. The full study was a 6 x 4 design, with the six models and four sample sizes

yielding a total of 24 conditions. In order to control for sampling error, 100 samples of

each condition were generated, and the results were analyzed across replications.

After the initial analysis of the simulated data, some samples failed to converge

using BILOG's default number of EM cycles and Newton-Gauss iterations (10 cycles,

followed by 2 Newton steps). This was particularly true of sample size 100, and the 3-PL

and 3-PLac models (see Table 1). A second phase of analysis was performed on any non-

converging data files, with modified &LOG command files in which the number of

iterations was increased to the arbitarily large values of 50 EM cycles and 10 Newton-

Gauss iterations.

Insert Table 1 about here
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Increasing the number of iterations greated increased the number of samples that

converged (typically, in far fewer than the maximum number of iterations), but did not

eliminate nonconvergence. A subset of nonconverging data files were examined in detail.

Typically one or two items had excessively large values in one of the parameters. If

removed from the analysis, the remaining items would converge successfully. Based on

the design of this study and our desire to collapse results across replications, rather than

deleting items we chose to resample. For those samples that did not converge after the

second data analysis, new simulated data were generated from the origirial-parameters and

were used to replace the nonconverging samples in the raw data files. The samples with

new data were then analyzed and all were found to converge.

Results

A variety of evaluative measures are conducted in analyses of item parameter

recovery. For studies such as the present one, in which data are generated from one

model, but may be estimated according to another, certain comparisons are inappropriate.

For example, if the data have been generated from a 3-PL model, then those parameter

estimates obtained from 2-PL and 1-PL models cannot be directly referenced back to the

generating parameters (e.g., analyses such as root mean squared error), since they are not

on the same scale. The relative success of the six IRT models in this study was therefore

determined using indices of model-data fit and indices of the stability of the models

across samples.

Fit Indices

Two indices of fit were calculated for each item in each sample. These fit indices

represent the extent to which each model was able to predict the generating data in the

sample. First, raw residuals from ability groups (Hambleton & Swaminathan, 1985) were

calculated for each sample and each model. In this method, the range of estimates of

theta in the sample is divided into ten equal intervals. Within each interval, the squared

difference between the actual proportion of examinees who answered the item correctly

and the expected proportion based on the IRT model of the item is calculated. The sum of
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these squared residuals, across the ten intervals, is calculated as the index of fit for the

item in the sample, and the mean of these fit indices across the 100 samples was used:

{,[E(Puk Euk)1
n

100

where

ri = raw residual for item i

Pkik = observed proportion of correct responses for item i, interval j, and sample k,

Eijk = predicted proportion of correct responses for item i, interval j, and sample k.

For the second index of fit, individual person residuals were calculated. These are

the residuals between the observed item data and the obtained probabilities (Xi.;

calculated for each item and each examinee. The average of these residuals across

examinees is used as the fit index for the item:

XP,

I (Xijk Puk)11

40

100
where

XP; = mean person residual for item i

Xijk = observed response for item i, examinee j, and sample k,

Pijk = estimated probability of correct responses for item i, examinee j, and sample k.

Stability Indices

Estimates of the stability of the item parameter estimates and the item response

functions were obtained by calculating the standard deviations of the estimates of the a
and b parameters, and the standard deviations of the entire item response curve over the

100 samples. The standard deviations of the item parameter estimates were obtained

using the usual formula for the sample estimate of a population standard deviation:

10
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= mean, of parameter i, for item j. in the. WO samples.

Parameter Estimation
Page 10

The standard deviation of the entire item response curve was obtained by dividing

the theta scale into 31 equally spaced intervals (spanning a theta range from -3.0 to 3.0)

and calculating the expected proportion of correct responses within each interval (Pmn, for

interval m and item n), given the item parameter estimates obtained from the sample data.

The standard deviation was then obtained as

where

{1,11, (P. g..)2
99

an
31

= standard deviation of item response curve for item n,

Pmno = estimate of proportion of correct responses for interval m, item n,

and sample o,

= mean of estimates for interval m, item n, in the 100 samples.

Model-Data Fit Across Samples

The fit indices obtained from each model are presented in Table 2. Reported in

the table are average fit indices across the 40 items. The standard deviations in the table

are the average standard deviation in item fit across the 100 samples. These fit indices

are graphed in Figures 1 and 2.
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Insert Table 2 and Figures 1 and 2 about here

An examination of the raw residuals (Figure 1), shows that the unmodified 3-PL

and the 3-PLa models evidenced the smallest residuals for the six models examined. The

differences in fit between the unmodified 3-PL and the modified, 3-PLa were negligible

with samples as small as 250 (in which the residuals were 0.1177 for the 3-PLa, and

0.1188 for the unconstrained 3-PL model). However, with samples of size 100, the

constrained model showed a better fit to the data (0.2168 for the 3-PLa model and 0.2489

for the 3-PL). The only exception to the superior fit of these two models is with samples

of size 100, in which the residuals from the 2-PL model (0.2430) were slightly smaller

than those of the unconstrained 3-PL (0.2489). However, in this small sample condition,

the 3-PLa model was notably better fitting than any of the other five models.

For the individual person residuals (Figure 2), both the unmodified 3-parameter

model and the 3-parameter model with constrained a (3-PLa) provided the best fit to the

data across all of the sample sizes examined. With samples of size 100, the constrained a

model was substantially superior to the unmodified model (with residuals of 0.0107 and

0.0140, respectively). As sample size increased, the difference in fit of these two models

became negligible (with residuals of 0.0180 and 0.0183, for the constrained and

unconstrained models, respectively, with samples of size 1000), but the fit of both of

these models remained substantially better than that of the other four models examined.

Least well fitting to the data were the 1-PL and 2-PL models (including both constrained

and unconstrained versions of the latter). The 3-PL model with both constrained a and

fixed c (3-PLac) did not fit the data as well as the less constrained versions of the 3-PL,

but the fit of this model was better than that of the 1-PL or 2-PL models.

The variation in the fit of the models across the samples is reported in Table 2.

The standard deviations reported in this table are the average standard deviations of the fit

indices in the 100 samples. Small values of this statistic reflect consistency in fit across

the samples, while large values reflect greater amounts of variation in fit with different

samples of examinees. As seen in Table 2, the standard deviations for both indices of

12
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model-data fit (i.e., (Xi.; PO and model residuals) were smallest for the 3-PL and 3-PLa

models, and were largest for the 1-PL and 2-PL models. The smaller variability for the

3-PL and 3-PLa models was consistent across the sample sizes examined in this study.

Thus, these data suggest that the 3-PL and 3-PLa models not only provide better average

fit than the other models, but the fit is more consistent across samples.

Stability Across Samples

The second general method for evaluating the success of the six models was the

stability of item parameter estimates across samples. Estimates of such stability were

obtained by calculating the standard deviations of the estimates for the a and b parameters

for each item, then averaging these standard deviations across the 40 items on the test. In

addition, an overall measure of the stability of the item curves was obtained by

calculating the standard deviation of at each of 31 theta values. These stability

estimates are presented in Table 3 and are graphed in Figures 3 through 5.

Insert Table 3 and Figures 3 5 about here

In an examination of the stability of the estimates of the b parameter (Figure 3), all

of the estimates became more stable as sample size increased, and the stabilities across

models became more similar with large sample sizes. For example, with samples of size

100, the most stable estimates of b were obtained with the 1-PL model (standard

deviation = 0.2543), while the least stable estimates were obtained with the 3-PLa model

(standard deviation = 0.3627), giving a range in stability of 0.1084. In contrast, with

samples of size 1000, the most stable estimate (obtained with the 1-PL model, standard

deviation = 0.0762) was only 0.0467 lower than the least stable estimate (obtained with

the 3-PL model, standard deviation = 0.1229). However, the most stable estimates of b,

across the four sample sizes examined in this study were obtained with the 1-PL and the

2-PLa models. Conversely, the least stable estimates were obtained with the 3-PL and

3-PLa models.

13
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The stability of the estimates of the a parameter showed a different pattern from

that obtained with the b parameter (Figure 4). Less convergence was evident as sample

size increased, and the difference in stabilities between small and large sample sizes was

less striking. As should be expected, the most stable estimates of the a parameter were

obtained with those models that provided a constraint on a (i.e., the 1-PL, 2-PLa, 3-PLa,

and 3-PLac). The models that do not constrain the a parameter (2-PL and 3-PL)

evidenced substantially more variability across samples. As sample size increased, the

variability in the a parameter estimates obtained with the 2-PL model was similar to that

obtained with the models that impose a constraint on a, but the variability obtained with

the 3-PL model remained notably larger even with samples of size 1000.

Finally, the estimates of the stability of the item curves (Figure 5) are consistent

with the previous stability indices. The least stable curves were obtained with the 3-PL

and 3-PLa models, while the most stable curves were obtained with the 1-PL model.

With samples of size 100, the standard deviation of the curves with the 1-PL was only

0.0421, while the standard deviations for the 3-PL and 3-PLa were 0.0564 and 0.0547,

respectively. As with the stability of the b parameter estimates, the stability of the overall

item response curve increased substantially with increasing sample size, however,

convergence of stability across models was not evident in these data. With the largest

sample sizes examined (n = 1000), the standard deviation of the curves for the 1-PL

model was 0.0124, while those for the 3-PL and 3-PLa models were 0.0239 and 0.0219,

respectively.

Discussion

This study was designed to investigate the relative effects of sample size and

model misspecification on item parameter estimation, and whether various modifications

to typical models might improve estimation under these conditions. While for some of

the analyses, performance of the models tended to converge at the larger sample sizes, at

the smaller samples the modified models displayed some important performance

differences relative to the unconstrained models.

14
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The strongest pattern of results in this study was the tendency for models which

displayed the best fit within samples, to display the poorest stability across samples.

Conversely, models which demonstrated good stability across replications tended to be

associated with relatively poorer fit within replications. For conditions examined in this

research, it appears that a trade-off between these two criteria may need to be made.

One anticipated effect of sample size was the general improvement in fit for all

models as sample size increased. Stability also improved with increasing sample size.

For the b parameter, this.indreased"stability was associated with a tendency for the

performance of the various models to become more similar to one another. For the

overall item response curves an improvement in stability as sample size increased was

still present, although somewhat less marked, but convergence across models was not

evident. A more complex result was found for the a parameter, due to constraints some

of the models placed on this parameter. Little convergence across models appeared, and

few models demonstrated improvement in stability with increased sample sizes.

Interestingly, the models with constrained a parameters performed about as well (or

poorly) at the smallest sample sizes as they did at the largest. Only minimal changes in

performance across sample size can be noted for these constained models, with the 2-PLa

and 3-PLac showing slight improvement, while the 3-PLa worsened slightly.

Truth for this research was defined as the 3-PL model, and the data were

generated according to this model. This would suggest that models which incorporated 3

parameters (the 3, 3-PLa, and 3-PLac models) should demonstrate better fit than those

models with fewer parameters. In general, this expectation is realized, along with a

tendency for these models to display poorer stability than the 2- and 1-parameter models.

In comparison to the unconstrained 3-PL model, the 3-PLa generally displayed better fit,

with results converging at N=1000. At N=100, a sample size far below recommendations

for use of a 3-parameter model, the 3-PLa model yielded the best fit to the observed data.

The stability of estimation of the a parameter and of the overall ICC were also improved

under the 3-PLa model; however, the stability of the b parameter was slightly worse for

the 3-PLa as compared to the unconstrained 3 parameter model when N<500. The

3-PLac showed relatively poorer fit and somewhat better stability in comparison to the

15
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3-PL and 3-PLa models, while displaying better fit and poorer stability than the

remaining 2- and 1-parameter models.

The 2-parameter model with a constrained a parameter (2-PLa) displayed better

fit than the unconstrained 2-PL model under the individual person residual analysis, but

not under the analysis of raw residuals obtained from ability groups, with results

converging at N=1000 for both analyses. The 2-PLa demonstrated better stability than

the 2-parameter model for the a and b parameters, as well as for the ICC as a whole. This

improved stability can be noted across all sample sizes, but is especially evident at sample

sizes less than 500.

For this simulation, imposing a more informative prior on the variance of the a

parameter seemed to improve both fit and stability in comparison to the unconstrained

models with the same number of parameters, especially at the smaller sample sizes. This

effect can be noted for both the 2-PLa and 3-PLa models (in comparison to the 2-PL and

3-PL models), but is most marked for the 3-PLa. These results are in line with those

noted by Harwell and Janosky (1991), who investigated the effect of differing prior

variances on the a parameter in a 2-PL model, and found more informative priors to

improve parameter recovery with small samples and short tests.

When an additional constraint is placed on the c parameter, as well as on the a

parameter (3-PLac), fit was worsened markedly, while stability was somewhat improved.

In fact, the 2-PLa and the 3-PLac may be viewed as "compromise" models for this set of

results. These two models, which differ only by the inclusion of a common, non-zero c

for the 3-PLac, tended to produce results in the center of the set of 6 models investigated

in this study.

Other research on model modifications related to the c parameter used a fixed

value for c (Barnes & Wise, 1991; Sireci, 1992), rather than the common c investigated in

this study. Barnes and Wise noted improved results for modified models including a

fixed c, over both the 3- and 1-parameter models under small sample conditions and

multiple-choice data. The fixed c method could have yielded improvements over the

common c, since use of that method reduces the number of parameters which need to be

estimated.

16
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One limitation of this study was the use of only a single set of parameters for

generating data. Another, was the fact that the data were generated according to a single

model. This may have implications for the performance of modifications such as the

3-PLa and the 3-PLac relative to other models under investigation.

What the general performance of any of these modified models may be under a

variety of condition remains to be investigated. For constraints on both the c and the a

parameter, the relative truth of those constraints may hold strong implications for the

effectiveness of the models which make use of them. For example, some datasets may be

inappropriately modelled by a more restrictive prior on the distribution of the a

parameter. Additionally, the range of c values in a given dataset may be poorly

represented by a common value. An informative prior, or a fixed value, which are far

from truth could lead to worse results than those obtained without constraints.

Future research on modified models should include the use of additional data sets

and generating parameters. Tests of differing lengths and test characteristic curves should

be utilized, along with differing examinee ability distributions and sample sizes.

Alternative model modifications should also be considered, including a fixed c and

additional prior distributions for the a parameter. Finally, the accuracy and stability of

the item parameter estimates obtained on one sample could be evaluated through use of a

second sample and a cross-validation approach.

0
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Table 1

Number of Nonconverging Samples in the First Analysis/Second Analysis

Sample Size
Model 100 250 500 1000

1-PL 1/1 0 0 0
2-PL 27/6 8/0 3/0 1/0

2-PLa 3/0 2/0 3/0 0
3-PL 42/14 31/4 17/1 6/0

3-PLa 7/0 2/0 1/0 0
3-PLac 92/0 100/0 99/0 100/0

Note: 0 in a cell indicates all samples converged for a condition
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Table 2

Indices of Model-Data Fit for Six Models and Four Sample Sizes.

Fit Index

Sample
Size Model

X-P Residual

Mean SD Mean SD

100 1-PL 0.0276 0.4259 0.2629 0.2298
2-PL 0.0271 0.4201 0.2430 0.2130
2-PLa 0.0257 0.4231 0.2553 0.2237
3-PL 0.0140 0.4178 0.2489 0.2078
3-PLa 0.0107 0.4178 0.2168 0.1540
3-P1.n: 0.0215 0.4210 0.2585 0.2310

250 1-PL 0.0276 0.4264 0.1650 0.1269
2-PL 0.0288 0.4213 0.1435 0.1124
2-PLa 0.0276 0.4235 0.1554 0.1466
3-PL 0.0162 0.4183 0.1188 0.0938
3-PLa 0.0146 0.4209 0.1177 0.0945
3-PLac 0.0240 0.4232 0.1774 0.2121

500 1-PL 0.0281 0.4258 0.1265 0.0856
2-PL 0.0295 0.4230 0.1204 0.1497
2-PLa 0.0281 0.4225 0.1082 0.0725
3-PL 0.0177 0.4196 0.0744 0.0458
3-PLa 0.0167 0.4193 0.0698 0.0362
3-PLac 0.0251 0.4218 0.1106 0.0842

1000 1-PL 0.0280 0.4263 0.1084 0.0639
2-PL 0.0295 0.4221 0.0862 0.0594
2-PLa 0.0293 0.4225 0.0891 0.0622
3-PL 0.0183 0.4195 0.0505 0.0201
3-PLa 0.0180 0.4198 0.0507 0.0191
3-PLac 0.0254 0.4214 0.0761 0.0407
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Table 3

Indices of Stability of Estimates.

Sample
Size Model

Stability

b a Curve

100 I-PL 0.2543 0.0876 0.0421
2-PL 0.3090 0.2518 0.0560
2-PLa 0.2719 0.1300 0.0463
3-PL 0.3486 0.3001 0.0564
3-PLa 0.3627 0.1118 0.0547
3-PLac 0.2944 0.1355 0.0482

250 1-PL 0.1570 0.0513 0.0260
2-PL 0.1992 0.1816 0.0365
2-PLa 0.1852 0.1280 0.0329
3-PL 0.2155 0.2760 0.0399
3-PLa 0.2278 0.1317 0.0383
3-PLac 0.1932 0.1382 0.0334

500 1-PL 0.1114 0.0394 0.0184
2-PL 0.1451 0.1335 0.0266
2-PLa 0.1373 0.1108 0.0249
3-PL 0.1678 0.2340 0.0317
3-PLa 0.1616 0.1331 0.0289
3-PLac 0.1467 0.1212 0.0259

1000 1-PL 0.0762 0.0216 0.0124
2-PL 0.1080 0.0989 0.0195
2-PLa 0.0983 0.0869 0.0181
3-PL 0.1229 0.1812 0.0239
3-PLa 0.1143 0.1252 0.0219
3-PLac 0.1065 0.1044 0.0190
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